Publications
Here is the list of my publications. It can be also found in my google scholar page link provided below.
Parametric holomorphy of elliptic eigenvalue problems (Submitted in 2024)
—
The study of parameter-dependent partial differential equations (parametric PDEs) with countably many parameters has been actively studied for the last few decades. In particular, it has been well known that a certain type of parametric holomorphy of the PDE solutions allows the application of deep neural networks without encountering the curse of dimensionality. This paper aims to propose a general framework for verifying the desired parametric holomorphy by utilizing the bounds on parametric derivatives. The framework is illustrated with examples of parametric elliptic eigenvalue problems (EVPs), encompassing both linear and semilinear cases. As the results, it will be shown that the ground eigenpairs have the desired holomorphy. Furthermore, under the same conditions, improved bounds for the mixed derivatives of the ground eigenpairs are derived. These bounds are well known to take a crucial role in the error analysis of quasi-Monte Carlo methods.
Semilinear elliptic eigenvalue problem - Parametric analyticity and the uncertainty quantification (Submitted in 2023, Accepted by Communication in Mathematical Science in 2024)
—
In this paper, to the best of our knowledge, we make the first attempt at studying the parametric semilinear elliptic eigenvalue problems with the parametric coefficient and some power-type nonlinearities. The parametric coefficient is assumed to have an affine dependence on the countably many parameters with an appropriate class of sequences of functions. In this paper, we obtain the upper bound estimation for the mixed derivatives of the ground eigenpairs that has the same form obtained recently for the linear eigenvalue problem. The three most essential ingredients for this estimation are the parametric analyticity of the ground eigenpairs, the uniform boundedness of the ground eigenpairs, and the uniform positive differences between ground eigenvalues of linear operators. All these three ingredients need new techniques and a careful investigation of the nonlinear eigenvalue problem that will be presented in this paper. As an application, considering each parameter as a uniformly distributed random variable, we estimate the expectation of the eigenpairs using a randomly shifted quasi-Monte Carlo lattice rule and show the dimension-independent error bound.